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Peripheral blood smear is microscopically examining technique for blood 
samples from patients by painting special dyes in clinic laboratories. Blood 
diseases can be diagnosed by examining morphology, numbers and 
percentages of leukocyte, erythrocyte and thrombocyte cells in blood 
samples. However, this method is a considerably time-consuming process 
and requires an evaluation performed by a hematology specialist. It is not 
often provided a definitive assessment due to the expert's clinical experience 
and judgment during review. Although there are considerable studies about 
the segmentation of blood smear images in the literature, there is no method 
to segment all blood cells. In this study, a new segmentation algorithm is 
proposed, which automatically extracts leukocyte, erythrocyte and 
thrombocyte cells from peripheral blood smear images. Purpose of this study 
here is to make highly accurate and complete blood count. The algorithm 
treats each image as a universal set and represents each object in the image 
as a subset as a result of the applied operations. In the developed method, 
leukocytes and thrombocytes achieve better success than other studies. 
However, it has been observed that the average success rate of stacked 
erythrocytes decreases. Statistical tests of the developed method were 
performed using 200 blood smear images in experimental studies. According 
to the obtained results, it is seen that high accuracy (leukocyte 99.86%, 
thrombocyte 98.4%, erythrocyte 93.4%) and precision (leukocyte 94.77%, 
thrombocyte 90.14%, erythrocyte 95.88%) were achieved in all three blood 
cells. 
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1. Introduction 

*Segmentation can be defined as the subdivision 
of an image, each of which has meaningful and 
similar properties (gray level, color, texture, 
brightness, contrast, etc.). It is one of the most 
important (Kaur et al., 2015) and difficult stages of 
digital image processing (Dhiman and Talwar, 2014). 
Although many methods and approaches are 
proposed in the literature, there is no absolute 
solution that can still be applied on all image types 
and produce excellent results (Kaur et al., 2015; 
Agrawal and Xaxa, 2014). For this reason, it stays as 
a problem that cannot be solved in image processing 
and computer vision (Agrawal and Xaxa, 2014). 
Besides general-purpose images, segmentation of 
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medical images is also a very important field of 
study. Medical image segmentation has become very 
important with the development of complex medical 
imaging modalities, especially with the ability to 
produce high resolution two-dimensional (2D) and 
three-dimensional (3D) images in large quantities 
(Sumengen et al., 2002). Medical image 
segmentation refers to the separation of two or 
three-dimensional images into corresponding cluster 
of biological constructs. As in general-purpose 
images, there is no universal method or algorithm 
for segmenting medical images (Sharma and 
Aggarwal, 2010). The use of manual methods 
(Madhloom et al., 2012) in medical image analysis 
brings with many drawbacks like increasing time 
cost (Mohamed and Far, 2012; Nazlibilek et al., 
2014) and leading to calculation errors. In recent 
years, various studies have been carried out by a 
significant number of scientists to remove these 
problems. Some of them are automatic image 
processing methods. Although the concept of 
automating is relative, it means that the system 
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needs fewer parameters while running and the 
system can manage its decision-making processes 
with its own internal calculation methods without 
requiring any intervention. 

Blood smear slides are usually prepared manually 
by clinical laboratory staff. For this reason, an ideal 
blood film cannot always be obtained. The main 
reasons for this are the inability to take blood drops 
as much as the patient, the pushing of the spreader 
slide in a jerky manner, the spreading angle that is 
not being constant, the physical deformations in the 
slides and it is not clean enough. Such situations 
affect the performance of the automated blood 
analysis. 

In recent years, many studies have been 
performed for the segmentation of blood smear 
images. These studies are generally based on White 
Blood Cells (WBC) or Red Blood Cell (RBC) 
segmentation (Dey et al., 2015). Madhloom et al. 
(2012) have developed a method of segmenting 
lymphoblast cells with high accuracy using 
microscopic blood images. They have combined 
morphological reconstruction with the color 
properties of the cell to differentiate lymphoblast 
cells from other blood cells. They stated that they 
achieved 100% success with 180 blood images. Liu 
et al. (2012) used mean shift clustering, color space 
transformation and nucleus mark watershed 
operation methods for peripheral blood smearing 
and segmentation of white blood cells on bone 
marrow images in different illumination 
environments. Tareef et al. (2016) developed a 
method for automatically segmenting nucleus and 
cytoplasm of white blood cells into five main classes 
based on color and tissue healing. They used 
Discrete Wavelet Transform (DWT) and 
morphological filters to make the cytoplasm more 
prominent in the segmentation process and to 
remove the details of the cell nucleus. Accordingly, 
they achieved better results than other color-based 
methods. Jiang et al. (2006) developed a new WBC 
segmentation technique using scale-space filtering 
and watershed clustering methods. They performed 
scale-space filtering method to obtain nucleus of the 
WBC and watershed clustering on 3D HSV histogram 
to remove cytoplasm. They stated that the proposed 
method provided much better performance than the 
previous studies. Salem (2014) transformed 
microscopic blood images of RGB format into L * a * 
b color space for segmentation of white blood cells 
and then used color components a and b as 
parameters for K-means clustering technique. Sadr 
et al. (2010) successfully transformed blood images 
into YCbCr color space for automatic segmentation 
of WBC cell nucleus, dividing each Cb color 
component into Y color components to make the cell 
nucleus more prominent. In order to improve the 
performance of the method, they applied Max and 
Min filters to the Cb and Y components. Yang et al. 
(2014) used the S (Saturation) component and the B 
(Blue) component in the RGB color space by 
converting the blood images to HSI color space for 
segmentation of leukocytes. According to these color 

components, they managed to determine the cell 
nucleus and cytoplasm boundaries of the WBC by 
applying “AND” and “XOR” logical process on two 
different binary images of an RGB image. Arslan et al. 
(2014) used color and shape based algorithms for 
WBC segmentation. The study was performed in two 
steps as transformation and cell segmentation. In the 
first stage, they obtained a density map by taking the 
B and G color components of the blood image in RGB 
space. Then, binary conversion and distance 
transform were performed to mark the locations of 
the cells. They successfully segmented white blood 
cells by applying watershed and connected 
component labeling methods. 

In this study, we have developed an algorithm 
that can be easily integrated into real-time systems 
that can fully segment blood cells such as leukocytes, 
erythrocytes and thrombocytes on microscopic 
blood images. This method composes of five phases 
based on color and shape. Each microscopic blood 
image can be processed within a few seconds and 
can be divided into sub-images whose blood-shaped 
elements are segmented and can calculate their 
numbers (WBC, RBC, Thrombocyte) at a high degree 
of accuracy. 

2. Background 

Blood consists of two parts, formed elements of 
the blood and the fluid called plasma, which these 
cells contain. Blood cells are three types: red blood 
cells (RBC), leukocytes (WBC), and thrombocytes 
(platelets). The physiological characteristics of these 
cells (Marieb, 2006) are detailed in Table 1. 

2.1. Connected-components labeling 

Each item in an image is used to determine the 
component to which they are attached by looking at 
neighborhood relations, and is often preferred in 
jobs where automatic checking (Gonzalez and 
Woods, 2007) is performed. The components on 
images are measured based on the proximity or 
colors of neighboring pixels at a certain degree and 
are labeled with a number in the unique structure. 
Based on neighborhoods there are commonly used 
types with 4 and 8 connections. The image is 
represented by an 𝑅. If we consider that the 
segmented 𝑅 image 𝑆 comes from the discrete 
region, the objects in the image can be calculated as 
in Eq. 1. 

 
𝑅𝑓 = 𝑅𝑏

𝐶 = ⋃ 𝑅𝑖
𝑆
𝑥=1,𝑥≠𝑏                     (1) 

 

where 𝑅𝑓 is objects in the image, 𝑅𝑏 is 

background of the image, and 𝐶 is complement of the 
set. 

2.2. Convex hull 

The Convex Hull is the smallest convex set, which 
spans a set of points 𝑆 = {𝑝0, 𝑝1, … , 𝑝𝑁} in the 
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Euclidean plane. In this study, Graham (1972) Scan 
algorithm is used as a Convex Hull method. In this 
method, firstly the point 𝑝(𝑥0, 𝑦0) which has the 
smallest value with respect to the y axis is detected 
(Fig. 1). Then, based on this point, all the remaining 
points are sorted from small to large according to 

their polar angle tan−1(𝑦 − 𝑦0 𝑥 − 𝑥0⁄ ). The 
orientation is calculated together with the previous 
(𝑝ℎ−1) and the next (𝑝ℎ+1) points for each point (𝑝ℎ) 
that will form the outer shell. If there is a change of 
direction at the selected point, this point is 
eliminated.

 
Table 1: Summary of formed elements of the blood 

Cell Types Image Diameter Range (per μL) Nucleus Cytoplasm Granules 

Basophil 

 

10-14 
μm 

0.5-1% of WBC 20-50 Bi-lobed or tri-lobed Pale blue 
Large purplish-black 

cytoplasmic 

Eosinophil 

 

10-14 
μm 

2-4% of WBC 100-400 Bi-lobed 
Full of 

granules 
Orange-red 

Lymphocyte 

 

5-17 μm 
25-40% of WBC 1500-

3000 
Spherical or 

indented 
Clear, Pale 

blue 
- 

Monocyte 

 

14-24 
μm 

3-8% of WBC 100-700 U or kidney shaped Gray-blue Fine reddish (azurophil) 

Neutrophil 

 

10-12 
μm 

50-70% of WBC 3000-
7000 

2 to 5 segments or 
lobes 

Pale blue-
pink 

Inconspicuous cytoplasmic 

Erythrocytes 

 

7-8 μm 4-6 million Biconcave, anucleate disc; salmon-colored 

Thrombocytes 

 

2-4 μm 150-500 thousand Discoid cytoplasmic fragments containing granules; stain deep purple 

 

 
Fig. 1: Sort a series of point according to 𝑃0 
 
If there is no change of direction, this point is 

determined as a coordinate of the outer shell. As a 
result of this, all the points in the plane are scanned. 
Characteristic features of the three points (a, b and c) 
in the same plane are classified as counter clockwise 
(CCW), clockwise (CW) and on the same line (COLL, 
Collinear). The orientation of these points is 
characterized by the sign of ∆(𝑎, 𝑏, 𝑐) of the 
determinant. Orientation calculation is performed by 
finding the determinants of the vertical and 
horizontal axis values of these points in the 
Euclidean plane (Eq. 2). 

 

∆(𝑎, 𝑏, 𝑐) = |

𝑥𝑎 𝑦𝑎 1
𝑥𝑏 𝑦𝑏 1
𝑥𝑐 𝑦 1

| = 𝑥𝑎 |
𝑦𝑏 1
𝑦𝑐 1

| − 𝑦𝑎 |
𝑥𝑏 1
𝑥𝑐 1

| +

|
𝑥𝑏 𝑦𝑏

𝑥𝑐 𝑦𝑐
|                      (2) 

 

According to the result of the orientation process; 
if ∆(𝑎, 𝑏, 𝑐) < 0 the characteristic feature is CCW, if 
∆(𝑎, 𝑏, 𝑐) > 0 it is CW and if ∆(𝑎, 𝑏, 𝑐) = 0 it is COLL. 

In this case, it is decided whether the selected point 
is convex by looking at the obtained results and the 
points that are not convex are removed from the list. 
In order for a point to be considered as convex, the 
characteristic feature must be CCW. 

2.3. Watershed transform 

Watershed transform is a method used for image 
segmentation in the field of mathematical 
morphology. It was first proposed in 1979 by 
(Beucher and Lantuejoul, 1979) for segmentation of 
grayscale images. As a result of the topographical 
structure, the watershed is the whole of the areas 
where rain water has been collected at a certain 
stage through the superficial flow and under the 
influence of them. In the same way, the slope of an 
image resembles a topographic surface. Here, the 
elevation is determined by the gray values of the 
pixels in the image. Low gray values mean valleys 
and high gray values mean peaks. 

3. Materials and methods 

In this study, two different peripheral blood films 
stained with Giemsa for educational purposes were 
used. Prepared blood films were taken under a light 
microscope with a light microscope at the 
magnification power of 100X given in Table 2. 

p1 
p2 

p0 

p4 

p6 p7 

p3 
p5 
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Table 2: Specifications of the biological microscope 
Features Values 

Objectives 4X, 10X, 40X, 100X 
Eyepiece Wide Field Eyepiece WF 10×/18 

Condenser Sliding-in condenser NA1.25 
Focusing Coaxial Coarse, Moving Range 20mm 

Illumination 6V/ 20W Halogen Lamp 

 

These images were taken with the digital camera 
in the specifications given in Table 3. 

 
Table 3: Specifications of the colored digital camera 

Features Values 
Effective Pixels 16.0 MP 

Sensor Panasonic MN34120 
Sensor Size 1/2.33 inch 

Resolution (Max) 4608H × 3456V 
Color Temp. 1900K-8000K 

Frame Rates 
5fps @ 16MP (4608×3456) 
25fps @ 4MP (2304×1728) 

 

First of all, proposed method produces a 
grayscale output image based on green channel after 
normalizing input image for leukocyte and 
thrombocyte cells. Next, Nucleus Template Function 
(NTF) is applied to generate a template of the 
leukocyte nucleus and thrombocytes as a polygon. 
The normalized input image is given to the input of 
the Cytoplasm Template Function (CTF) and the 
cytoplasm polygon is obtained at the function 
output. Leukocyte and thrombocyte extraction is 
performed by applying set and subset combination 
operations for these polygons. In the final step, the 
Erythrocyte Template Function (ETF) generates the 
erythrocyte polygon. ETF polygons are compared 
with NTF and CTF polygons and segmentation of 

erythrocytes is performed. Thus, the segmentation 
process of all blood cells is completed. Let 𝐹 be 
image function is defined as Eq. 3. 

 
𝐹: 𝑆 → [0,1,2, … ,255]𝐶                     (3) 

 
where 𝑆 = ⟦0; 𝑚 − 1⟧ × ⟦0; 𝑛 − 1⟧ is image size, 𝑚 
and 𝑛 are column and row numbers of the 𝐹 image, 
and 𝑐 is the number of color channels in the image 
𝑐 ∈ {1, 3, 4}. The definition for the pixel values in a 
color image is as in Eq. 4. 
 
𝑣 = 𝐹[𝑥, 𝑦] = (𝑅, 𝐺, 𝐵)                    (4) 
 

Irregular color distributions that occur due to 
illumination (Liu et al., 2012) during the acquisition 
of peripheral blood smear images are a serious 
problem especially in color based image processing. 
The normalization process ensures that the pixel 
values in these images are brought to a certain 
standard. This helps the algorithm to produce 
accurate results. For image normalization, each color 
component is calculated as shown in Eq. 5. 

 
∗

𝑣𝑅
=

𝑣𝑅

𝑣𝑅+𝑣𝐺+𝑣𝑏
× 255,     

∗
𝑣𝐺

=
𝑣𝐺

𝑣𝑅+𝑣𝐺+𝑣𝑏
× 255,     

∗
𝑣𝐵

=
𝑣𝐵

𝑣𝑅+𝑣𝐺+𝑣𝑏
× 255                     (5) 

 

where 𝑣𝑅
∗  is normalized red channel, 𝑣𝐺

∗  is 
normalized green channel and 𝑣𝐵

∗  is normalized blue 
channel. A normalized pixel is expressed as 𝑣∗ =
(𝑣𝑅

∗ , 𝑣𝐺
∗ , 𝑣𝐵

∗ ). Fig. 2 shows the results of normalized 
image and RGB channels. Fig. 3 shows the general 
flow diagram of the algorithm 

 

 
Fig. 2: The RGB color components of a sample blood image; a) Input RGB image, b) Normalized image, c) Normalized red 

channel, d) Normalized green channel, e) Normalized blue channel 
 

3.1. Nucleus template function (NTF) 

The nucleus has a strong physical absorption and 
chemical affinity, because it contains a dense 
nucleoprotein and nucleic acid. Therefore, the 
staining intensity of leukocyte nucleus is much 
higher than cytoplasm and erythrocyte cells (Gu and 
Cui, 2012). In addition, nucleus and thrombocytes in 
digital images with RGB color space have the lowest 
value of the Green color component compared to 
other objects in the image (Prinyakupt and 
Pluempitiwiriyawej, 2015). As shown in Fig. 2d, 
when a RGB image converted to gray scale using the 
green channel, 𝐺[𝑥, 𝑦] = (𝑣𝐺

∗ , 𝑣𝐺
∗ , 𝑣𝐺

∗ ), leukocyte 
nucleus and thrombocyte can be separated much 
more easily than other color components. Following 
the pre-processing, a simple color reduction method 
(Eq. 6) is performed to eliminate cytoplasm and 
erythrocytes in the image; where 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is the 

color reduction coefficient. The 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 value is set 
to 5 in this study. When it gets higher value, it causes 
significant loss of information in the image. 

 

𝐹[𝑥, 𝑦] = 𝑟𝑜𝑢𝑛𝑑 (
𝐺[𝑥,𝑦]

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
) × 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙                   (6) 

 
In addition, it results in some undesired noises in 

the result image. Median smoothing filter is applied 
to remove this problem (Eq. 7). 

 
𝐹[𝑥, 𝑦] = median{𝑔[𝑝, 𝑞]}                    (7) 
 

where 𝑔[𝑝, 𝑞] is convolution kernel, 𝑝 and 𝑞 are 
kernel index. In this study, a 3x3 convolution matrix 
is chosen for performance. In the next step, image is 
converted to binary image (Eq. 8). Since non-
parametric functions are important in for automated 
segmentation process, Otsu is preferred as a 
thresholding method. 
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𝑇[𝑥, 𝑦] = {
255, 𝑖𝑓 𝐹[𝑥, 𝑦] ≥ 𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                   (8) 

 

Image background is represented by 0, while 
objects in images are represented by 1. In this case, 
the nucleus appears to be background. In order to 
reverse it, image inversion is performed as in Eq. 9 to 

allow the nucleus to be transformed into objects 
(foreground). 

 

𝐼[𝑥, 𝑦] = {
255, 𝑖𝑓 𝑇[𝑥, 𝑦] = 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                   (9)

 

 
Fig. 3: General flow chart of proposed method 

 
The Connected-Components Labeling method is 

used to identify these objects with a unique ID. In the 
next step, edge points are determined by applying 
the Canny edge detection algorithm on each labeled 
component. Thus, the points forming the outer shell 
of nucleus and thrombocytes according to Fig. 4e are 
stored as polygons of 𝑃𝑛 =
{[𝑥0, 𝑦0], [𝑥1, 𝑦1], … , [𝑥𝑚 , 𝑦𝑚]}. Where 𝑛 is the number 
of objects and 𝑚 is the number of points in the object 
of 𝑛.. A list of all polygons for Leukocyte Extraction is 
stored as 𝑃𝑁𝑇 = {𝑃0, 𝑃1, 𝑃2, … , 𝑃𝑛}. Nucleus and 
thrombocyte in the 𝑃𝑁𝑇  list is separated from each 
other according to criteria determined during 
Leukocyte and Thrombocyte Extraction. All the 
processing steps of the NTF are as shown in Fig. 4. 

3.2. Cytoplasm template function (CTF) 

The cytoplasm is located between the cell 
membrane and the nucleus and has light colored, 
semi-fluid and transparent properties due to its 
high-water content. For this reason, cytoplasm 
segmentation is much more difficult than nucleus 
segmentation. In addition, the segmentation of the 
outer borders of the cytoplasm is complicated 
because of being adjacent to red blood cells (Tareef 
et al., 2016). When studies performed in this area are 
examined, it is seen that cytoplasm segmentation has 
less success than cell nucleus segmentation. In order 
to achieve a higher success rate, a Foreground 
Enhancement method is developed to optimize the 
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segmentation of cytoplasm with low density. In this 
method, the processing sequence is as follows;  

 
a) The average color (𝑎𝑣𝑔) between 0 and 255 is 

found in the image histogram. 
 

𝑎𝑣𝑔 = ∑ 𝐻𝑖
255
𝑖=0 𝑖 ∑ 𝐻𝑖

255
𝑖=0⁄                                    (10) 

 

b) The average color (𝑇) between 𝑎𝑣𝑔 and 255 is 
found according to the image histogram. 

𝑇 = ∑ 𝐻𝑖
255
𝑖=𝑎𝑣𝑔 𝑖 ∑ 𝐻𝑖

255
𝑖=𝑎𝑣𝑔⁄                  (11) 

 
c) For each pixel in the image, a comparison is made 

according to the 𝑇 threshold value. Thus, the 
cytoplasm becomes more apparent. 
 

F[x, y] = {
0, if F[x, y] > T

F[x, y], otherwise
                 (12) 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 4: Nucleus template function process; a) Pre-processed image, b) Simple color reduction and smoothing, c) Thresholding 
and inverse colors, d) Connected-components labeling, e) Edge detection, f) Result image 

 

Note that in Fig. 5a, the background pixel values 
are higher than the foreground. For this reason, all 
pixels above the brightness average are made zero 
and the objects are emphasized more strongly. This 
is followed by removal of the undesired noise from 
the image with Median smoothing filter. When 
thresholding is applied, all the objects in the 
cytoplasm are converted into a binary image. Before 
Watershed algorithm, fill-hole function is applied for 
all blood cells to prevent over-segmentation of the 
cytoplasm. 

As shown in Fig. 5d, the template of the cytoplasm 
of both leukocytes is segmented optimally. 
Component labeling is then performed to ensure that 
each object has a unique identity. In the next step, 
according to Eq. 3, the actual size of each object is 
calculated. The points forming the outer shell of all 
the objects in the result image in Fig. 5f are stored as 
𝑃𝑛 = {[𝑥0, 𝑦0], [𝑥1, 𝑦1], … , [𝑥𝑚 , 𝑦𝑚]} polygons. 
Subsequently, the maximum radius of each polygon 
is calculated and compared with the minimum 
leukocyte diameter (5 μm) given in Table 1. Objects 
equal to and larger than this radius are added to 
𝑃𝐶𝑇 = {𝑃0, 𝑃1, 𝑃2, … , 𝑃𝑛}. Note that some cells in the 

𝑃𝐶𝑇  polygons except the cytoplasm (usually RBC) are 
added to the list. However, these cells are eliminated 
because they do not meet the criteria determined 
during Leukocyte Extraction process. 

3.3. Leukocyte and thrombocyte extraction 

In this section, full leukocyte extraction is 
performed by combining the binary result images 
obtained from the NTF and CTF procedures. Let NTF 
be 𝑓𝑁𝑇 and CTF be 𝑓𝐶𝑇 symbolic functions. The 
obtained leukocyte image is 𝑓𝐿 = 𝑓𝑁𝑇 ∪ 𝑓𝐶𝑇 . However, 
due to the conditions mentioned in the NTF and the 
CTF, other blood cells other than leukocytes are 
represented as 𝑓𝐿 . To resolve this issue, a constraint 
rule is required for the polygons (𝑃𝑁𝑇) obtained with 
NTF as shown in Fig. 6b and polygons (𝑃𝐶𝑇) obtained 
with CTF as shown in Fig. 6c. 

This rule is as follows; Leukocytes are detected 
on the merged image by searching for situations that 
provide the condition of 𝑝𝑛 ⊆ 𝑃𝐶𝑇 , ∀𝑝𝑛{𝑛|𝑛 ∈ ℕ, 𝑝𝑛 ∈
𝑃𝑁𝑇}. In other words, every cytoplasm that has at 
least one nucleus becomes a leukocyte. Each polygon 
that provides this condition in the 𝑝𝑛 polygon and 
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𝑃𝐶𝑇  polygon list is added to the leukocyte polygon list 
in the form of 𝑃𝐿 = {𝑃0, 𝑃1, 𝑃2, … , 𝑃𝑛}. In Fig. 6f, 

leukocyte extraction results are shown.    

 

 
Fig. 5: Cytoplasm template steps; a) Pre-processed image, b) Foreground enhancement and smoothing, c) Theresholding, d) 

Fill holes and watershed, e) Connected-components labeling, f) Graham scan 
 

However, each 𝑝𝑛 polygon may not be a subset of 
𝑃𝐶𝑇 . So, in case of 𝑝𝑛 ⊈ 𝑃𝐶𝑇 , the polygons represent 
thrombocytes, not leukocyte nucleus. Thus, 
thrombocytes in the 𝑃𝑁𝑇  polygon list are added to 

the thrombocyte polygon list as 𝑃𝑇 =
{𝑃0, 𝑃1, 𝑃2, … , 𝑃𝑛}. Fig. 6h shows the result of 
thrombocyte extraction. 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 6: Leukocyte and thrombocyte extraction process; a) Pre-processed image, b) NTF result, c) CTF result, d) 𝑓𝐿 = 𝑓𝑁𝑇 ∪ 𝑓𝐶𝑇  
result, e) 𝑃𝐿 result, f) Leukocyte extraction result, g) 𝑃𝑇 result, h) Thrombocyte extraction result 

 

3.4. Erythrocyte template function (ETF) and 
extraction 

Erythrocytes constitute more than 90% of blood 
cells and almost all are of the same size. In general, 

erythrocytes are like stacked discs in peripheral 
blood smear images, so the extraction is often 
difficult. In some cases, they are clustered so that the 
numbers of them cannot be distinguished even with 
the naked eye. In this study, the extraction of 
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erythrocytes is performed in two stages. In the first 
stage, it passes through the process steps as shown 
in Fig. 7 to obtain the ETF of the image. In the second 
step, the convex hull of each labeled component is 

determined by the Graham Scan method. The points 
forming the convex hull are then stored as polygons 
𝑃𝑛 = {[𝑥0, 𝑦0], [𝑥1, 𝑦1], … , [𝑥𝑚 , 𝑦𝑚]}. 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 7: Erythrocyte segmentation process; a) Pre-processed image, b) Contrast adjustment and inversion, c) Extract red 
channel, d) Foreground enhancement, e) Thresholding and inversion, f) Fill holes, g) Watershed, h) CCL 

 
Finally, the non-subset of 𝑃𝐿  or 𝑃𝑇  from the 

obtained polygons is determined as 𝑝𝑛 ⊈ (𝑃𝐿 ∪ 𝑃𝑇). 
Thus, as shown in Fig. 8, all the points forming the 
convex hull of erythrocytes are found and the 
segmentation process is completed. 

 

  
(a) (b) 

Fig. 8: Erythrocyte extraction; a) Graham Scan, b) Result 
image 

4. Experimental results 

The peripheral blood smear images used in this 
study are obtained using a 16MP color digital camera 
integrated into a light microscope. The data set 
prepared in the two different light conditions used in 
the tests of the developed method is shown in Table 
4. Each image contains at least one leukocyte, several 
thrombocytes and several erythrocytes. These blood 
samples used in the experiments were examined by 
a specialized hematologist and confirmed the 
validity of the results. 

In this paper, we applied eleven statistical 
measurements to analyze segmentation results in 
experimental studies. These measurements are 

shown in Table 5. Where TP, TN, FP, and FN refer to 
true positive (correctly approved cells), true 
negative (correctly rejected cells), false positive 
(incorrectly approved cells) and false negative 
(incorrectly rejected cells), respectively. 

 
Table 4: Data sets used in the experiments 

Datasets Image count Magnification Resolution 
Dataset-1 100 100X 4608x3456 
Dataset-2 100 100X 2304x1728 

 

Sample peripheral blood smear images and 
results of Dataset-1 are shown in Fig. 9. Statistical 
measurement results according to Dataset-1 are 
given in Table 6. Sample peripheral blood smear 
images and results of Dataset-2 are shown in Fig. 10. 
Statistical measurement results according to 
Dataset-2 are given in Table 7. 

The mean values of the two datasets used to test 
the developed method are given in Table 8. 
Accordingly, the accuracy of leukocyte segmentation 
is 99.86% and the accuracy of leukocyte 
segmentation is 94.77%. The accuracy of 
thrombocytes is 98.4%, the precision of 
thrombocytes is 90.14%. Because thrombocytes 
have a much smaller diameter than leukocytes, paint 
residues on the preparation, etc. accuracy and 
precision decrease. According to this study, 
designing a separate Thrombocyte Template 
Function (TTF) instead of using NTF in thrombocyte 
segmentation gives better results. Finally, it is seen 
that the accuracy of erythrocytes segmentation is 
93.4% and the precision of erythrocytes 
segmentation is 95.88%. However, when the images 
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in Dataset-2 are examined, it is understood that 
segmentation of erythrocytes according to Dataset-1 
is more difficult. For this reason, the accuracy of 
Dataset-2 is slightly lower. Fig. 11 shows the 

accuracy and precision measurement charts of the 
segmentation results and detailed examples showing 
all processes are given in Fig. 12. 

 
Table 5: Statistical measurements 

Sensitivity or True Positive Rate 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Bookmaker Informedness 𝐵𝑀 = 𝑇𝑅𝑃 + 𝑆𝑃𝐶 − 1 

Specificity or True Negative Rate 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Markedness 𝑀𝐾 = 𝑃𝑃𝑉 + 𝑁𝑃𝑉 − 1 

Precision or Positive Predictive Value 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Accuracy 𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Negative Predictive Value 𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 F-Measurements 𝐹𝑀 = 2 (1

𝑇𝑃𝑅⁄ + 1
𝑃𝑃𝑉⁄ )⁄  

False Positive Ratio 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝐹𝑃
 Matthews Correlation Coefficient 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

False Negative Ratio 𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

 

   

   
Fig. 9: Sample peripheral blood smears images and results of Dataset-1 

 
Table 6: Dataset-1 results 

Dataset-1 TPR TNR PPV NPV FPR FNR BM MK ACC MCC FM 
Leukocyte nucleus 95,77 99,97 98,55 99,91 0,03 0,09 95,75 98,46 99,89 97,10 97,14 

Leukocyte cytoplasm 96,97 99,94 94,12 99,97 0,06 0,03 96,91 94,09 99,92 95,49 95,52 
Leukocyte 96,37 99,96 96,33 99,94 0,04 0,06 96,33 96,28 99,90 96,29 96,33 

Thrombocyte 79,17 99,56 88,37 99,13 0,44 0,87 78,73 87,50 98,74 83,00 83,52 
Erythrocyte 97,67 67,21 96,38 76,31 32,79 23,69 64,88 72,69 94,60 68,67 97,02 

 

Segmentation results obtained in this study are 
compared with other studies in the literature. 
Leukocyte segmentation results are given in Table 9, 
erythrocyte segmentation results are given in Table 
10, and thrombocyte segmentation results are given 
in Table 11. 

Prinyakupt and Pluempitiwiriyawej (2015) 
performed nucleus and cytoplasm extraction with 
high success rate by performing combined 
thresholding, morphological operation and ellipse 
curve fitting process steps. However, it is known that 
the number of repetitions in the application of 
morphological operators in the nucleus 
segmentation section will differ from the image to 
the image. For example, if there is not enough 
erosion, the image will be noisy. For this reason, it is 
not a very suitable structure for automatic 
segmentation methods.  

Alomari et al. (2014) proposed an iterative 
structured circle detection algorithm for 
segmentation of WBC and RBC cells. In the tests 
performed, the WBC achieved an accuracy rate of 
over 98% and a precision of close to 90%. However, 
physiological structures required by the nature of 
WBCs are not regular.  

For this reason, circular approaches may not 
always be suitable for leukocytes. As predicted, this 
methodical approach to RBCs has yielded more 
successful results. However, erythrocytes in 
irregularly stacked or nonparametric structures did 
not produce good results. If we have implemented 
the Convex Hull method in our study, it provides 
flexibility, especially for irregularly structured blood 
cells. Vale et al. (2014) used the green component of 
the input images according to the RGB color space. 
They automatically calculated the Euclidean 
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distances between the peak points in the histogram 
and the rest of the leucocyte core, which were 

obtained according to this component, by means of 
Fuzzy clusters. 

 

   

   
Fig. 10: Sample peripheral blood smears images and results of Dataset-2 

 
Table 7: Dataset-2 results 

Dataset-2 TPR TNR PPV NPV FPR FNR BM MK ACC MCC FM 
Leukocyte nucleus 93,10 99,92 94,74 99,90 0,08 0,10 93,03 94,64 99,82 93,83 93,91 

Leukocyte cytoplasm 89,19 99,92 91,67 99,90 0,08 0,10 89,11 91,57 99,82 90,33 90,41 
Leukocyte 91,15 99,92 93,20 99,90 0,08 0,10 91,07 93,10 99,82 92,08 92,16 

Thrombocyte 86,41 99,23 91,91 98,64 0,77 1,36 85,64 90,54 98,06 88,06 89,08 
Erythrocyte 95,43 73,96 95,37 74,20 26,04 25,80 69,39 69,57 92,19 69,48 95,40 

 

 
a) Accuracy (ACC) (%) 

 
b) Precision (PPV) (%) Fig. 11: Comparative results for datasets 

 
Table 8: Mean values of Dataset-1 and Dataset-2 

Average of Datasets TPR TNR PPV NPV FPR FNR BM MK ACC MCC FM 
Leukocyte nucleus 94,44 99,95 96,64 99,91 0,05 0,09 94,39 96,55 99,86 95,46 95,53 

Leukocyte cytoplasm 93,08 99,93 92,89 99,94 0,07 0,06 93,01 92,83 99,87 92,91 92,97 
Leukocyte 93,76 99,94 94,77 99,92 0,06 0,08 93,70 94,69 99,86 94,19 94,25 

Thrombocyte 82,79 99,40 90,14 98,88 0,60 1,12 82,19 89,02 98,40 85,53 86,30 
Erythrocyte 96,55 70,59 95,88 75,25 29,41 24,75 67,13 71,13 93,40 69,08 96,21 

 
Table 9: Comparison of leukocyte segmentation results 

Methods TPR TNR PPV NPV ACC MCC 
Prinyakupt and Pluempitiwiriyawej (2015) — 92,50 — 92,30 — — 

Alomari et al. (2014) 89,70 98,40 89,73 — 98,40 — 
Vale et al. (2014) 94,87 99,75 99,74 95,11 97,31 94,73 

Our proposed method 93,76 99,94 94,77 99,92 99,86 94,19 

 
According to the results, they achieved more than 

95% in both leukocyte and erythrocyte 
segmentation. 

Khajehpour et al. (2013) applied the Euclidian 
distance transform to the binary transformed image. 

By applying the Watershed method to the gray scale 
image obtained by this process, they have segmented 
the erythrocyte cells with high success rate. Angulo 
and Flandrin (2003) have proposed a two-step 
method for erythrocyte segmentation. In the first 
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step, by applying mathematical morphology methods 
for image analysis, erythrocyte extraction, 
erythrocyte centers and erythrocytes with center 
were obtained. In the second step, according to these 

three parameters, an automatic method of 
segmentation processing is proposed by calculating 
the number of connected components, spreading and 
overlaps coefficients. 

 

    

    

    

    
Fig. 12: Detailed segmentation samples. First column demonstrate the original images, second are leukocytes and 

thrombocytes, third are erythrocytes, and last column the segmentation of all blood cells results 
 

Table 10: Comparison of erythrocyte segmentation results 
Methods TPR TNR PPV NPV ACC MCC 

Alomari et al. (2014) 95,00 98,00 95,39 — 97,50 — 
Vale et al. (2014) 97,96 92,82 93,17 97,85 95,39 90,90 

Khajehpour et al. (2013) 97,99 45,09 97,76 47,91 95,91 44,36 
Angulo and Flandrin (2003) 97,29 89,53 88,88 97,46 93,12 86,59 

Our proposed method 96,55 70,59 95,88 75,25 93,40 69,08 
 

Table 11: Comparison of thrombocyte segmentation results 
Methods TPR TNR PPV NPV ACC MCC 

Dey et al. (2015) — — — — 92,71 — 
Our proposed method 82,79 99,40 90,14 98,88 98,40 85,53 

 

Dey at al. (2015) proposed a color-based 
algorithm for thrombocyte segmentation from 
bloodstream images (Dey at al., 2015). In the 
method, the input image is converted from RGB to L 
* a * b color space, and the image processing is 
performed using *a and *b components. It is known 

that thrombocytes are stained in the same color as 
WBCs. For this reason, it is difficult to distinguish 
them from each other in color-based segmentation 
methods. However, since WBCs are usually larger in 
size, this problem can be solved to a considerable 
extent by making a size comparison. However, the 
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diameter of some lymphocytes may be close to the 
diameter of the thrombocytes. In such cases, it will 
be necessary to look for cell cytoplasm in order to 
achieve higher success. 

5. Conclusion 

In this study, a fully automated segmentation 
method is developed to present a new perspective 
for the segmentation of leukocytes, erythrocytes and 
thrombocytes in peripheral blood smear images 
obtained under different light and spread conditions. 
The proposed method segments all formed-elements 
of the blood in five phases. First, it produces a 
normalized grayscale image for leukocyte and 
thrombocyte cells. Second, it generates a polygon list 
for the leukocyte nucleus and thrombocyte. Third, it 
generates a polygon list for the cytoplasm of 
leukocyte. Fourth, it extracts leukocyte and 
thrombocyte using the polygons mentioned in the 
second and third steps. Fifth, it generates a polygon 
list for the erythrocyte and it extracts erythrocyte 
cells using all polygon lists. Each peripheral blood 
smear image and its components are considered as a 
set/subset, error rate of cell segmentation is 
decreased. In addition, storage of image components 
as polygons provides computational flexibility in 
terms of cell physiology. Thus, it is thought to help 
about the evaluation of abnormal cells for studies on 
blood diseases. The proposed method is quite 
successful and efficient in leukocyte cells. As 
previously mentioned for thrombocytes, better 
results can be obtained by performing an image 
processing separately from leukocyte segmentation. 
In erythrocytes, although segmentation of stacked 
cell clusters is an important problem, an efficient 
result is obtained in this study. Performance 
improvement can be achieved by developing a 
“Distance Transform” or “ROI” based local 
segmentation method for erythrocyte cell clusters 
that cannot be segmented. 
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